Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27579, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533066

RESUMO

Rice bakanae, a devastating seed-borne disease caused by Fusarium species requires a more attractive and eco-friendly management strategy. The optimization of plant-mediated silver nanoparticles (AgNPs) as nanofungicides by targeting Fusarium species may be a rational approach. In this study, Azadirachta indica leaf aqueous extract-based AgNPs (AiLAE-AgNPs) were synthesized through the optimization of three reaction parameters: A. indica leaf amount, plant extract-to-AgNO3 ratio (reactant ratio), and incubation time. The optimized green AgNPs were characterized using ultraviolet-visible light (UV-Vis) spectroscopy, field emission scanning electron microscopy (FESEM) with energy dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), and powder X-ray diffraction (XRD) techniques. The optimal conditions for producing spherical, unique, and diminutive-sized AgNPs ranging from 4 to 27 nm, with an average size of 15 nm, were 2 g AiLAE at a 1:19 ratio (extract-to-AgNO3) and incubated for 4 h. Fusarium isolates collected from infected soils and identified as F. fujikuroi (40) and F. proliferatum (58 and 65) by PCR were used for seed infestation. The AgNPs exhibited concentration-dependent mycelial growth inhibition with EC50 values ranging from 2.95 to 5.50 µg/mL. The AgNPs displayed exposure time-dependent seed disinfectant potential (complete CFU reduction in F. fujikuroi (40) and F. proliferatum (58) was observed at a concentration of 17.24 µg/mL). The optimized green AgNPs were non-toxic to germinating seeds, and completely cured bakanae under net-house conditions, suggesting their great nano-fungicidal potency for food security and sustainable agriculture.

2.
Mar Pollut Bull ; 198: 115863, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039574

RESUMO

This study investigated microplastics (MPs) in commercial sea salts from Bangladesh. The presence of MPs in the 18 sea salt bands was 100 %, where the mean MPs abundance was 471.67 MPs/kg, ranging between 300 and 670 MPs/kg. The maximum number of MPs in the 300-1500 µm size class was significantly higher than the 1500-3000 µm and 3000-5000 µm size class. The most dominant color was black. Fibers and foams were the dominant shapes. The highest number of MPs was 41 %, obtained from coarse salt grains. Four types of polymers were mainly identified from the analyzed samples: PP, PE, PET, and PA. The mean polymer risk index value among these sea salts was 539 to 1257. The findings of this study can be helpful for consumers, salt industries, and policymakers to be aware of or reduce MP contamination levels in sea salts during production and consumption.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Sais , Bangladesh , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Cloreto de Sódio na Dieta/análise
3.
Mar Environ Res ; 192: 106222, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37852122

RESUMO

Meretrix lyrata which is under the family of Veneridae and under the order of Venerida, is a nutritionally and economically important edible mussel in Bangladesh. However, studies on species identification and nutritional value in M. lyrata are scarce. Therefore, a detailed investigation was conducted on (i) species identification of the common edible mussel through DNA-barcoding and morphometrics, (ii) reproductive features, such as size at sexual maturity, spawning, and peak-spawning seasons under different environmental factors, and (iii) nutritional status through proximate analysis of M. lyrata mussel collected from the Bay of Bengal, Bangladesh. The results indicated that the size at sexual maturity for M. lyrata was 4.2 cm and the spawning seasons were significantly affected by the dissolve oxygen and salinity. The study also demonstrated that the spawning of M. lyrata occurred from January to June and December while peak spawning season was May in the Bay of Bengal. The higher protein and moisture contents with lower fat in M. lyrata indicated that are value-added seafood with higher nutritional values for consumers.


Assuntos
Baías , Bivalves , Animais , Frutos do Mar , Alimentos Marinhos , Reprodução , Valor Nutritivo , Estações do Ano , Biologia
5.
Sci Total Environ ; 901: 165952, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37536599

RESUMO

The growing use of synthetic chemical compounds/substances in vector control of mosquitoes, associated with their adverse effects on the environment and non-target organisms, has demanded the development of eco-friendly alternatives. In this context, this study aimed to evaluate the larvicidal action of different cellulose microcrystalline (CMs) concentrations and investigate their toxicity mechanisms in Culex quinquefasciatus fourth instar larvae as a model species. Probit analysis revealed that the median lethal concentrations (LC50) for 24 h and 36 h exposure were 100 and 58.29 mg/L, respectively. We also showed that such concentrations induced a redox imbalance in the larvae, marked by an increase in the production of reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS), as well as a reduction in the activity of superoxide dismutase (SOD) and catalase (CAT). Furthermore, different alterations in the external morphology of the larvae were associated with the ingestion of CMs. On the other hand, exposure of adult zebrafish (Danio rerio) to LC5024h and LC5036h for seven days did not induce any behavioral changes or alterations mutagenic, genotoxic, biochemical, or in the production of cytokines IFN-γ and IL-10. Thus, taken together, our study demonstrates for the first time that the use of CMs can constitute a promising strategy in the control of C. quinquefasciatus larvae, combining insecticidal efficiency with an "eco-friendly" approach in the fight against an important mosquito vector of several human diseases.

6.
Environ Geochem Health ; 45(8): 5531-5556, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37382719

RESUMO

Bangladesh is not an exception to the growing global environmental problem of plastic pollution. Plastics have been deemed a blessing for today's world thanks to their inexpensive production costs, low weight, toughness, and flexibility, but poor biodegradability and massive misuse of plastics are to blame for widespread contamination of the environmental components. Plastic as well as microplastic pollution and its adverse consequences have attracted significant investigative attention all over the world. Plastic pollution is a rising concern in Bangladesh, but scientific studies, data, and related information are very scarce in numerous areas of the plastic pollution problem. The current study examined the effects of plastic and microplastic pollution on the environment and human health, and it examined Bangladesh's existing knowledge of plastic pollution in aquatic ecosystems in light of the rapidly expanding international research in this field. We also made an effort to investigate the current shortcomings in Bangladesh's assessment of plastic pollution. This study proposed several management approaches to the persistent plastic pollution problem by analyzing studies from industrialized and emerging countries. Finally, this work pushed investigators to investigate Bangladesh's plastic contamination thoroughly and develop guidelines and policies to address the issue.


Assuntos
Plásticos , Poluentes Químicos da Água , Humanos , Plásticos/toxicidade , Organismos Aquáticos , Microplásticos , Ecossistema , Bangladesh , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 889: 164224, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211131

RESUMO

Invisible microplastics (MP) have become a significant problem worldwide in recent years. Although many studies have highlighted the sources, effects, and fate of MPs pollution on various ecosystems in developed countries, there is limited information on MPs in the marine ecosystem along the northeastern coast of the Bay of Bengal (BoB). Coastal ecosystems along the BoB coasts are critical to a biodiverse ecology that supports human survival and resource extraction. However, the multi-environmental hotspots, ecotoxicity effects, transport mechanisms, fates, and intervention measures to control MP pollution initiatives along the BoB coasts have received little attention. Therefore, this review aims to highlight the multi-environmental hotspots, ecotoxicity effects, sources, fates, and intervention measures of MP in the northeastern BoB to understand how MP spreads in the nearshore marine ecosystem. This study critically evaluates the hotspots and ecotoxic effects of pollution from MP on the coastal multi-environment, e.g., soil, sediment, salt, water, and fish, as well as current intervention measures and additional mitigation recommendations. This study identified the northeastern part of the BoB as a hotspot for MP. In addition, the transport mechanisms and fate of MP in different environmental compartments are highlighted, as are research gaps and potential future research areas. Research on the ecotoxic effects of MP on BoB marine ecosystems must be a top priority, given the increasing use of plastics and the presence of significant marine products worldwide. The knowledge gained from this study would inform decision-makers and stakeholders in a way that could reduce the impact of the legacy of micro- and nanoplastics in the area. This study also proposes structural and non-structural measures to mitigate the effects of MPs and promote sustainable management.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Plásticos , Ecossistema , Baías , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Biodiversidade
8.
Sci Total Environ ; 876: 162414, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36868275

RESUMO

The occurrence of microplastics (MPs) in aquatic environments has been a global concern because they are toxic and persistent and may serve as a vector for many legacies and emerging pollutants. MPs are discharged to aquatic environments from different sources, especially from wastewater plants (WWPs), causing severe impacts on aquatic organisms. This study mainly aims to review the Toxicity of MPs along with plastic additives in aquatic organisms at various trophic compartments and available remediation methods/strategies for MPs in aquatic environments. Occurrences of oxidative stress, neurotoxicity, and alterations in enzyme activity, growth, and feeding performance were identical in fish due to MPs toxicity. On the other hand, growth inhibition and ROS formation were observed in most of the microalgae species. In zooplankton, potential impacts were acceleration of premature molting, growth retardation, mortality increase, feeding behaviour, lipid accumulation, and decreased reproduction activity. MPs togather with additive contaminants could also exert some toxicological impacts on polychaete, including neurotoxicity, destabilization of the cytoskeleton, reduced feeding rate, growth, survivability and burrowing ability, weight loss, and high rate of mRNA transcription. Among different chemical and biological treatments for MPs, high removal rates have been reported for coagulation and filtration (>86.5 %), electrocoagulation (>90 %), advanced oxidation process (AOPs) (30 % to 95 %), primary sedimentation/Grit chamber (16.5 % to 58.84 %), adsorption removal technique (>95 %), magnetic filtration (78 % to 93 %), oil film extraction (>95 %), and density separation (95 % to 100 %). However, desirable extraction methods are required for large-scale research in MPs removal from aquatic environments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Águas Residuárias , Peixes , Organismos Aquáticos
9.
J Contam Hydrol ; 251: 104072, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36084350

RESUMO

This study was carried out to assess the groundwater quality through estimating trace and heavy metal concentration and radionuclide levels in the vicinity of the Rooppur Nuclear Power Plant (RNPP) sites. Twenty-six (26) parameters, including major cations (K, Na, Mg, Ca) and anions (SO4-2, NO3-), trace and heavy metals (Mn, Fe, Zn, Ni, Co, Pb, Cd, As, Hg, Cu, Li, Be, B, V, Ga, Sr, Ag, Ba) and radionuclides (137Cs, 226Ra, 228Ra, and 40K) were estimated in water samples in the study area. This study revealed that the concentration values (µg/L) of Mn (667.091 ± 7.481), Fe (191.477 ± 3.756), Sr (105.218 ± 13.424), and Zn (23.493 ± 1.134) were the dominant metals in the study area. Different pollution evaluation indices (i.e., HPI, HEI, NI, Cd) data revealed that the study area was under a low to medium level of pollution due to the presence of metals in water. Subsequently, non-carcinogenic and carcinogenic health risks assessments for both adults and children were conducted, which indicated that health risk for the carcinogenic metals were below the threshold level except As through oral exposure for both adult and children. The activity concentrations of 226Ra, 228Ra, and 40K were measured to demonstrate probable radioactivity pollution using Gamma-ray spectrometry (High-resolution HPGe detector). The highest activity concentration of 226Ra, 228Ra, and 40K in groundwater samples were 4.9 ± 1.24 Bq/L (RNPP-15), 1.71 ± 0.43 Bq/L (RNPP-15), and 15.43 ± 3.08 Bq/L (RNPP-15). Among the three studied radionuclides, 40K has the highest average activity concentration. The radiological indicators referred to the annual effective dose (AED) is 0.4273 mSv yr-1, which implies no significant cause of radiological risks and hazards (UNSCEAR guideline value). This study provides a baseline of trace and toxic metal contamination, radioactivity, and radiation levels in the groundwater of the nuclear power plant (being built) area.


Assuntos
Água Subterrânea , Metais Pesados , Adulto , Criança , Humanos , Centrais Nucleares , Bangladesh , Monitoramento Ambiental/métodos , Metais Pesados/análise , Radioisótopos/análise , Indicadores Básicos de Saúde , Água/análise , Medição de Risco/métodos
10.
Heliyon ; 8(8): e10009, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35928102

RESUMO

This investigation concentrates on the possibility of using gamma radiation for the decomposition of organic pollutants in textile wastewater and reuse as irrigation water. The wastewater sample was irradiated at four different absorbed doses of 3, 5, 8, and 10 kilo Gray (kGy). After irradiation at 8-10 kGy, physicochemical parameters, i.e., pH, turbidity, EC, total suspended solids (TSS) and total dissolved solids (TDS), have decreased sharply and approached to the expected value recommended by Department of Environment (DoE), Bangladesh. At 10 kGy absorbed dose, 59.0 % biological oxygen demand (BOD5) and 71.6 % chemical oxygen demand (COD) removal has been achieved, accelerating the enhancement in biodegradability index (BOD5/COD). Ammonium and total nitrogen have improved up to 87.0 % and 94.5 % after irradiation at 10 kGy doses. Subsequently, the treated textile wastewater samples were reused to grow Capsicum frutescens plants to inspect the fertility responses. When Capsicum plants were nourished by textile wastewater irradiated at 8-10 kGy, increased values were observed in the plant morphological parameters such as dry masses of the fruits (from 2.25 to 3.02 g), moisture content (from 91.35 to 92.62%), root length (from 13.21 to 16.56 cm), average plant height (from 2.42 to 4.07 cm/week), average number of leaves (from 14 to 16 nos./week), and total number of fruits (from 25 to 40 nos.) in comparison to those plants nourished by simply water and raw wastewater. The elemental analysis confirmed that negligible amounts of heavy metals were found in Capsicum fruits at higher absorbed doses. In contrast, helpful macro and micronutrients for plant production were raised to sufficient levels at 8-10 kGy, which can be the optimum doses for gamma irradiation to treat textile wastewater for maintaining sustainable water resources.

11.
Mar Pollut Bull ; 183: 114044, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007270

RESUMO

The Karnaphuli River is one of the prime and most important streams in the southeastern part of Bangladesh. The favorable water current and the geographic location have rendered the Karnaphuly River estuary a suitable habitat and a breeding ground for diverse fish species. Reversely, this estuary has been polluted by discharges from many point and non-point sources due to its location in the catchment area of a heavily industrialized area, Chattagram port city. However, published research concerning the status of toxic and trace elements in some commercially important benthic and pelagic coastal fish species in Karnaphuli River estuary was not found in the existing literature. Therefore, it's an important field of study on the assessment of toxic and trace elements concentration in the commercially important benthic and pelagic coastal fish species and their health taxation in the Karnaphuli River Estuary. Energy dispersive X-ray fluorescence (ED-XRF) was used to quantify trace metal concentration in edible parts of the fish species. This study revealed that the rank of the trace metals concentration was as follows (mg/kg): Zn (37.1) > Mn (16.12) > V (11.16) > Cu (9.49) > Rb (5.62) > Pb (2.98) > Cr (1.59) > Co (1.17). The F-test showed that a significant difference at 95 % confidence level in the distribution pattern of trace metals concentration among the examined fish species in the study area. The metal pollution index (MPI) in the muscle of fishes were found to be in the following order: L. bata > P. monodon > T. cirratus > M. bleekeri > O. pabda > H. nehereus > L. calcarifer > P. argenteus > P. paradiseus > T. toli, and the MPIs for most of the benthic fish species were higher compared to the pelagic fishes. On the other hand, the examined fish species were significantly bio-accumulative with the highest bio-accumulation factor value for benthic species. The multivariate analysis identified that the sources of the trace metals were associated with anthropogenic activities. For the human health risk assessment concern, estimated daily intake, target hazard quotient and cancer-causing risk were estimated. The results for non-cancer hazardous index values were found to be lower than unity. On the other hand, the total cancer risk data ranging from 1.24E-05 to 1.70E-05 were fallen within the range for the threshold values (1.0E-06 to 1.0E-04). However, considering the suggested values set by the environmental and regulatory agencies, it has been recommended that no significant non-carcinogenic and cancer-causing health risk for humans was seen due to the consumption of the studied fish species.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Animais , Bangladesh , Monitoramento Ambiental/métodos , Peixes , Humanos , Chumbo/análise , Metais Pesados/análise , Medição de Risco , Rios , Oligoelementos/análise , Água/análise , Poluentes Químicos da Água/análise
12.
Biology (Basel) ; 11(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36009771

RESUMO

Toxic metal pollution is a global issue, and the use of metal-accumulating plants to clean contaminated ecosystems is one of the most rapidly growing ecologically beneficial and cost-effective technologies. In this study, samples of sediment and three mangrove species (Excoecaria agallocha, Avicennia officinalis, Sonneratia apetala) were collected from the world's largest mangrove forest (along the Northern Bay of Bengal Coast) with the aim of evaluating metal concentrations, contamination degrees, and phytoremediation potentiality of those plants. Overall, the heavy metals concentration in sediment ranged from Cu: 72.41−95.89 mg/kg; Zn: 51.28−71.20 mg/kg; Fe: 22,760−27,470 mg/kg; Mn: 80.37−116.37 mg/kg; Sr: 167.92−221.44 mg/kg. In mangrove plants, the mean concentrations were in the order of E. agallocha > A. officinalis > S. apetala. The mean (± SD) concentration of each metal in the plant tissue (root) was found following the descending order of Fe (737.37 ± 153.06) > Mn (151.13 ± 34.26) > Sr (20.98 ± 6.97) > Cu (16.12 ± 4.34) > Zn (11.3 ± 2.39) mg/kg, whereas, in the leaf part, the mean concentration (mg/kg) of each metal found in the order of Fe (598.75 ± 410.65) > Mn (297.27 ± 148.11) > Sr (21.40 ± 8.71) > Cu (14.25 ± 2.51) > Zn (12.56 ± 2.13). The contamination factor (CF) values for the studied metals were in the descending order of Cu > Sr > Zn > Fe > Mn. The values of Igeo (Geo-accumulation index) and CF showed that the area was unpolluted to moderately polluted by Zn, Fe, Mn, Cu and Sr. Enrichment factor (EF) values in both sampling stations portrayed moderate to minimum enrichment. Phytoremediation potentiality of the species was assessed by bio-concentration factor (BCF) and translocation factor (TF). BCF values showed less accumulation for most of the heavy metals (<1) except Mn which was highly accumulated in all mangrove plants. The translocation factor (TF) values depicted that most of the heavy metals were strongly accumulated in plant tissues (>1). However, the BCF value depicts that Mn was highly bioconcentrated in E. agallocha, but the translocation on leaves tissue were minimum, which reveals that E. agallocha is phytoextractor for Mn, and accumulated in root tissues. All the examined plants can be used as phytoextractors as they have bioconcentration factors <1 and translocation factors >1. However, A. officinalis is clearly more suitable for metal extraction than S. apetala and E. agallocha in terms of hyper-metabolizing capabilities.

13.
Toxics ; 10(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35878252

RESUMO

Heavy metal (HM) contaminated soil can affect human health via ingestion of foodstuffs, inhalation of soil dust, and skin contact of soil. This study estimates the level of some heavy metals in soils of industrial areas, and their exposures to human body via dietary intake of vegetables and other pathways. Mean concentrations of Cr, Fe, Cu, Zn, As and Pb in the studied soil were found to be 61.27, 27,274, 42.36, 9.77, 28.08 and 13.69 mg/kg, respectively, while in vegetables the respective values were 0.53, 119.59, 9.76, 7.14, 1.34 and 2.69 mg/kg. Multivariate statistical analysis revealed that Fe, Cu, Zn, and Pb originated from lithogenic sources, while Cr and As are derived from anthropogenic sources. A moderate enrichment was noted by Cr, As, and Pb in the entire sampling site, indicating a progressive depletion of soil quality. The bioaccumulation factor (BCF) value for all the vegetables was recorded as BCF < 1; however, the metal pollution index (MPI) stipulates moderately high value of heavy metal accumulation in the vegetable samples. Hazard Index (HI) of >0.1 was estimated for adults but >1 for children by direct soil exposure, whereas HI < 1 for both children and adults via dietary intake of vegetables. Estimated Total carcinogenic risk (TCR) value due to soil exposure showed safe for adults but unsafe for children, while both the population groups were found to be safe via food consumption. Children are found more vulnerable receptors than adults, and health risks (carcinogenic and non-carcinogenic) via direct soil exposure proved unsafe. Overall, this study can be used as a reference for similar types of studies to evaluate heavy metal contaminated soil impact on the population of Bangladesh and other countries as well.

14.
Toxics ; 10(3)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35324764

RESUMO

The lower Meghna River, the easternmost part of the Ganges Delta, faces severe anthropogenic perturbations as it receives a huge discharge and industrial effluents. To measure the metal concentrations and human health hazards, edible tissues of 15 commercially important fish species were collected from the local fish markets and the lower Meghna River, Bangladesh. Trace and heavy metals such as Pb, Cr, Cu, Zn, Mn, Fe, Hg, Ni, Ca, Co, Se, Rb, Sr, and As were detected using the Energy Dispersive X-ray Fluorescence (EDXRF) method. The hierarchy of mean metal concentrations obtained was: Fe (162.198 mg/kg) > Zn (113.326 mg/kg) > Ca (87.828 mg/kg) > Sr (75.139 mg/kg) > Cu (36.438 mg/kg) > Se (9.087 mg/kg) > Cr (7.336 mg/kg) > Mn (6.637 mg/kg) > Co (3.474 mg/kg) > Rb (1.912 mg/kg) > Hg (1.657 mg/kg) > Ni (1.467 mg/kg) > Pb (0.521 mg/kg) > As (BDL). Based on the metal concentration obtained, the carnivorous species contained more metals than omnivores and herbivores. Similarly, the euryhaline and benthic feeder fishes had more metals than the stenohalines and demersal fishes. The metal pollution index (MPI) suggested that the highly consumed fish species Tilapia (Oreochromis mossambicus) and Rui (Labeo rohita) accumulated higher metals than other fishes. Both the Targeted Hazard Quotient (THQ) and Hazard Index (HI) values for adult and child consumers were <1, indicating that consumers would not experience the non-carcinogenic health effects. Although children were more susceptible than adults, carcinogenic risk (CR) exposure of Cr for all the consumers was found in the acceptable range (10−6 to 10−4), but the CR exposure of Pb was negligible for all the consumers. The correlation, principal component analysis (PCA), and cluster analysis were conducted to identify the sources of metals identified from the fish tissue. The results indicated that the probable sources of the pollutants were anthropogenic, arising from agricultural activities, electroplating materials, and lubricants used near the study area. However, the present study showed a different metal concentration in the samples at different levels but within the threshold levels non-carcinogenic and carcinogenic health risks; hence, the fishes of the area, in general, are safe for human consumption.

15.
Environ Sci Pollut Res Int ; 29(37): 56620-56641, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35347605

RESUMO

Water is the main sources for domestic purposes and as well as for both farming and industrial activities. Therefore, this study investigated the quality of groundwater at Ishwardi, Pabna district of Bangladesh. This study showed that the heavy metals such as Pb, Cd, Cr, As, Ni, Cu, Zn, and Fe were remaining in trace amount. The groundwater quality index (GWQI), heavy metal evaluation index (HEI), heavy metal pollution index (HPI), and degree of contamination (Cd) revealed that all of the groundwater samples belonged to good quality condition for drinking purposes. Nevertheless, Cd provided better index than other indices. Subsequently, hazard quotient (HQ) and hazard index (HI) values for heavy metals indicated that there was no significant noncarcinogenic health risk due to oral ingestion of groundwater except three sites. However, the paired student t-test ([Formula: see text]) revealed that child was found to be more exposed compared to adult for noncarcinogenic health risk due to oral ingestion of the same groundwater samples. This study revealed that pH, EC, TDS, salinity, Na+, K+, Mg2+, Ca2+, Cl-, SO42-, PO43-, and NO3- values in water samples are in tolerable limit according to Bangladesh (DoE) and international standards (WHO, IS, FAO, USEPA, UCCC). Subsequently, combined approaches of numerous irrigation water quality indices, sodium adsorption ratio (SAR), soluble sodium percentage (SSP), total hardness (TH), residual sodium carbonate (RSC), and Kelley's ratio (KR), were applied to appraise the appropriateness of water for farming purposes. The irrigation water quality index (IWQI) revealed that majority of the groundwater samples were suitable for agricultural purposes. Classification based on Wilcox and US salinity hazard diagram indicated a consistent conclusion, which indicated that the water quality was in good condition for farming in the study area.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Adulto , Agricultura , Bangladesh , Quimiometria , Criança , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Centrais Nucleares , Sódio , Poluentes Químicos da Água/análise , Qualidade da Água
16.
Environ Sci Pollut Res Int ; 29(28): 42742-42767, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35088286

RESUMO

Potentially toxic element (PTE) contamination in Wainivesi River, Fiji triggered by gold-mining activities is a major public health concern deserving attention. However, chemometric approaches and pattern recognition of PTEs in surface water and sediment are yet hardly studied in Pacific Island countries like Fijian urban River. In this study, twenty-four sediment and eight water sampling sites from the Wainivesi River, Fiji were explored to evaluate the spatial pattern, eco-environmental pollution, and source apportionment of PTEs. This analysis was done using an integrated approach of self-organizing map (SOM), principle component analysis (PCA), hierarchical cluster analysis (HCA), and indexical approaches. The PTE average concentration is decreasing in the order of Fe > Pb > Zn > Ni > Cr > Cu > Mn > Co > Cd for water and Fe > Zn > Pb > Mn > Cr > Ni > Cu > Co > Cd for sediment, respectively. Outcomes of eco-environmental indices including contamination and enrichment factors, and geo-accumulation index differed spatially indicated that majority of the sediment sites were highly polluted by Zn, Cd, and Ni. Cd and Ni contents can cause both ecological and human health risks. According to PCA, both mixed sources (geogenic and anthropogenic such as mine wastes discharge and farming activities) of PTEs for water and sediment were identified in the study area. The SOM analysis identified three spatial patterns, e.g., Cr-Co-Zn-Mn, Fe-Cd, and Ni-Pb-Cu in water and Zn-Cd-Cu-Mn, Cr-Ni and Fe, Co-Pb in sediment. Spatial distribution of entropy water quality index (EWQI) values depicted that northern and northwestern areas possess "poor" to "extremely poor" quality water. The entropy weights indicated Zn, Cd, and Cu as the major pollutants in deteriorating the water quality. This finding provides a baseline database with eco-environmental and health risk measures for the Wainivesi river contamination.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Cádmio/análise , Quimiometria , China , Monitoramento Ambiental , Fiji , Sedimentos Geológicos/análise , Ouro/análise , Humanos , Chumbo/análise , Metais Pesados/análise , Mineração , Medição de Risco , Rios , Poluentes Químicos da Água/análise
17.
Chemosphere ; 287(Pt 1): 132048, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34478961

RESUMO

Exposure to dust particles enriched with arsenic (As) is a significant health threat for populations living in Southeast Asian megacities. The mineralogical composition of dust particles is the key factor that controls the retention and release of As. This study investigated the degree of metal(oid)s pollution (As, Ca, Fe, K, Ga, Rb, Sr, Ti, V, Y, and Zr) in road dust of Dhaka city, Bangladesh. Enrichment factor and geoaccumulation index suggested that the road dust was heavily enriched with As, which triggers a comprehensive investigation of its controlling mechanisms and potential health risks by combining physicochemical and mineralogical information with multivariate analysis and a simulated probabilistic risk estimation model. Alkaline road dust (pH1:5 ranges from 8.02 to 10.34) in Dhaka city was found to have significant enrichment of As. Dust alkalinity was possibly controlled by the presence of carbonate minerals, such as calcite. Quartz was identified as the dominant mineral phase followed by magnesium carbon arsenide (MgCAs2). Carbonate mineral driven alkaline pH conditions in road dust would potentially trigger the release and mobilization of As to the environment. However, organic complexation can stabilize As on particle surfaces. Monte Carlo simulation-based health risk forecast suggested that the probability of As associated cancer risk has greatly exceeded the threshold value of 1E-4 for adults and children, and children are more vulnerable than adults. According to sensitivity analysis, the concentration of As and exposure duration (ED) posed the most significant impact (>58%) on risk estimation.


Assuntos
Arsênio , Metais Pesados , Adulto , Bangladesh , Criança , Cidades , Poeira/análise , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco
18.
Biol Trace Elem Res ; 200(6): 2999-3008, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34363589

RESUMO

Particle-induced X-ray emission (PIXE) method was used in this present research to identify the elements present in selected vegetable samples to show the possible influence in the metal absorption by the vegetables grown in a saline region of Rampal area of Munshiganj District, Bangladesh. The data acquisition setup is calibrated using a 2.5-MeV proton beam in the current ranges of 5nA to 15nA. The detector was used to measure the X-rays emitted during the irradiation. Data acquisition system MAESTRO-32 was used to measure the spectrum picks, and concentration calculation has been done by GUPIX/DAN-32 software. The purpose of this study is to determine the concentration of heavy and trace elements in these samples and to give current information on their safety for consumption. The result shows that K, Ca, and Fe have the highest concentrations, while lead exhibits the lowest but alarming rates compared to reference materials. The findings were likened to IAEA-V-10, IAEA-359, SRM 1515 (apple leaf), and SRM 1573a (tomato leaf). The outcomes of the present investigation demonstrate that these samples are not devoid of health risks in intake.


Assuntos
Abelmoschus , Amaranthus , Colocasia , Ipomoea , Raphanus , Bangladesh , Spinacia oleracea , Verduras
19.
Environ Sci Pollut Res Int ; 29(6): 8577-8596, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34494185

RESUMO

Currently, a well-developed combination of irrigation water quality index (IWQIs) and entropy water quality index (EWQIs) for surface water appraisal in a polluted subtropical urban river is very scarce in the literature. To close this gap, we developed IWQIs by establishing statistics-based weights of variables recommended by FAO 29 standard value using the National Sanitation Foundation Water Quality Index (NSFWQI) compared with the proposed EWQIs based on information entropy in the Dhaleshwari River, Bangladesh. Fifty surface water samples were collected from five sampling locations during the dry and wet seasons and analyzed for sixteen variables. Principal component analysis (PCA), factor analysis (FA), Moran's spatial autocorrelation, and random forest (RF) model were employed in the datasets. Weights were allocated for primary variables to compute IWQI-1, 2 and EWQI-1, 2, respectively. The resultant IWQIs showed a similar trend with EWQIs and revealed poor to good quality water, with IWQI-1 for the dry season and IWQI-2 for the wet season is further suggested. The entropy theory recognized that Mg2+, Cr, TDS, and Cl- for the dry season and Cd, Cr, Cl-, and SO42- for the wet season are the major contaminants that affect irrigation water quality. The primary input variables were lessened to ultimately shortlisted ten variables, which revealed good performance in demonstrating water quality status since weights have come effectively from PCA than FA. The results of the RF model depict NO3-, Mg2+, and Cr as the most predominant variables influencing surface water quality. A significant dispersed pattern was detected for IWQImin-3 in the wet season (Moran's I>0). Overall, both IWQIs and EWQIs will generate water quality control cost-effective, completely objective to establish a scientific basis of sustainable water management in the study basin.


Assuntos
Rios , Qualidade da Água , Bangladesh , Entropia , Monitoramento Ambiental
20.
Mar Pollut Bull ; 173(Pt B): 113160, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34808545

RESUMO

The focus of this study was to determine the depth-wise variability of physicochemical properties (i.e., pH, TOC, TN, and EC), and heavy metals (i.e., Pb, Cu, Zn, As, and Cr) concentration, and the associated biological and ecological risks of the mangrove sediment. The accumulation of metal contents and the phytoremediation and phytoextraction were also investigated in a mangrove species, Acanthus ilicifolius. The mangrove sediment consists of a higher proportion of sand fraction (56.6-74.7%) followed by clay (10-28%) and silt (10.1-15. 7%) fractions. The concentrations (mg/kg) of Pb, Cu, Zn, As, and Cr were ranged from 22.05-34.3, 8.58-22.77, 85.07-114, 5.56-12.91, and 0.98-5.12 in all the sediment layers. The hierarchy of the mean metal concentration in sediment was Zn (102 mg/kg) > Pb (25.6 mg/kg) > Cu (14.8 mg/kg) > As (8.79 mg/kg) > Cr (2.74 mg/kg) respectively. The examined metal concentrations were below the respective average shale values (ASVs). The degree of environmental, ecological, and biological risks was minimal according to various pollution indices like geoaccumulation index (Igeo), contamination factor (CF), and pollution load index (PLI). According to sediment quality guidelines (SQGs), the adverse biological risk effect was not likely to occur. The result of the potential ecological risk index (PERI) demonstrated that the study area was in the low-risk condition as the corresponded RI value < 100. A combined influence of geogenic and anthropogenic factors was identified as the metal sources by multivariate analysis. The study found that the accumulation rate of the metal contents was higher in leaves than that of roots. The mean descending metal concentration values were Zn (107) > Pb (28. 7) > Cu (16.9) > As (11.2) > Cr (4.99) in leaves and Zn (104.32) > Pb (27.02) > Cu (15.29) > As (10.39) > Cr (3.80) in roots. The translocation and bioaccumulation factors of heavy metals suggested that the mangrove plant species, A. ilicifolius can be used for phytoremediation and phytoextraction since the bio-concentration factor and translocation factor > 1. The studied species exhibited the metal tolerance associated with two following strategies, metal exclusion, and metal accumulation. However, excess metal tolerance can impact the surrounding marine environment.


Assuntos
Acanthaceae , Metais Pesados , Poluentes Químicos da Água , Efeitos Antropogênicos , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...